

Fraunhofer Institute for Cognitive Systems IKS

AISafety 2023 Workshop (IJCAI)

Iwo Kurzidem, Simon Burton, Philipp Schleiss

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses ML for Safety: What is that?

- **insufficiencies** within the software (architecture)

- Use methods and measures to address Machine Learning (ML) Use (explainable) ML approaches for safety analysis to identify ML insufficiencies and link the results to safety artifacts
- For instance: Uncertainty Calibration, Filtering, Robustification etc.
 For instance: Search-based Testing, Principal Component Analysis, Clustering etc.

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **Safety Artifacts: What kind?**

Equivalence Classes of Equal Behavior [2]

Definition: » [Equivalence] classes are identified based on the division of inputs and outputs, such that a representative test value can be selected for each [equivalence] class. «

→ How is this useful for safety?
 The identification and use of equivalence classes can
 considerably reduce the required testing effort.

3

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **Safety Artifacts: What kind?**

Equivalence Classes of Equal Behavior [2]

Definition: » [Equivalence] classes are identified based on the division of inputs and outputs, such that a representative test value can be selected for each [equivalence] class. «

→ How is this useful for safety?
 The identification and use of equivalence classes can
 considerably reduce the required testing effort.

Unknown Unknowns [3]

Definition: » Unknown Unknowns are [...] known parameters of scenarios [that] can combine into unknown potential triggering conditions (e.g., combination of weather and traffic conditions). «

→ How is this useful for safety?
 The identification of unknown unknowns can potentially
 reduce unsafe system behavior.

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **Safety Artifacts: How do we find them?**

Decision Trees (DTs): Mathematical Foundation

The basic concept of DTs is data partitioning according to:

Find highest decrease in impurity $\triangle(s, n)$ for data S_n via

$$\Delta(s,n) = f_i(n) - \frac{S_{nL}}{S_n} * f_i(nL) - \frac{S_{nR}}{S_n} * f_i(nR)$$

with impurity function

$$f_i(n) = \sum_{x,y \in L_n} (y_M - y_T)^2$$

in order to **repeatedly partition the data into disjoint, smaller subsets**, such that each subset is **consistent with regards to its output**.

Hyperparameters:

- Threshold θ for the minimum decrease in impurity, i.e., $\Delta(s, n) < \theta$
- The minimum number of samples S_{min} to allow further splits, i.e., $S_n > S_{min}$

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **ML for Safety: How did we create the RF?**

Previous work [4]

Basic idea for safety assurance: Build an introspective, explainable model (so we understand why "something" is safe)

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **ML for Safety: How did we create the RF?**

Previous work [4]

Basic idea for safety assurance: Build an introspective, explainable model (so we understand why "something" is safe)

ML components:

- Black-Box: A baseline YOLOv5 object detector is trained on COCO2017 data and fine-tuned on CARLA images.
- White-Box: A Random Forest (RF) is trained using the selected (safety) features and corresponding, evaluated YOLOv5 predictions.

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **ML for Safety: What did we find?**

Decision Tree Leaves

- 1. Leaves that show **little variance** in data and fulfill $S_n = S_{min}$ Meaning: Desired result, best possible subset, given θ and S_n
- 2. Leaves that show little variance in data and fulfill $S_n > S_{min}$ Meaning: Early stopping, best possible subsets, $\Delta(s,n) < \theta$
- 3. Leaves that show high variance in data and fulfill $S_n > S_{min}$ Meaning: Early stopping, inconsistent subsets, independent of θ and S_n Softmax Confidence=0.74
- 4. Leaves that show high variance in data and fulfill $S_n = S_{min}$ Meaning: Impure result, prevent overfitting, given θ and S_n

1.0

0.5

Softmax Confidence=0.05 n=10

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses Safety Artifacts: How did we find them?

Decision Tree Leaves

- 1. Leaves that show **little variance** in data and fulfill $S_n = S_{min}$ Meaning: Desired result, best possible subset, given θ and S_n
- 2. Leaves that show little variance in data and fulfill $S_n > S_{min}$ Meaning: Early stopping, best possible subsets, $\Delta(s,n) < \theta$
- 3. Leaves that show high variance in data and fulfill $S_n > S_{min}$ Meaning: Early stopping, inconsistent subsets, independent of θ and S_n Softmax Confidence=0.74
- 4. Leaves that show high variance in data and fulfill $S_n = S_{min}$ Meaning: Impure result, prevent overfitting, given θ and S_n

Safety Artifacts

Does this mean we found a general area of equivalent behavior, as the data "naturally" converges?

Does this mean the provided data does not allow a disentanglement with the contained information (given the inputs, data points and model)?

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses Safety Artifacts: Equivalence Classes of Equal Behavior

Identification and Validation of Equivalence Classes of Equal Behavior

Idea: If a leaf contains more samples than S_{min} a split could have been possible, however, it was not required as θ has not been exceeded, so all samples have the same output.

Identification:

- Search for leaves that fulfill $S_n > S_{min}$ and $\Delta(s,n) < heta$
- Aggregate all split criteria *s* along the path from origin this very leaf

Validation:

1) Check validity of the identified equivalence class within the complete data-set (training and test)

2) Check identified equivalence class against system

 \rightarrow Almost all the identified equivalence classes converge on a combination of factors representing technical limitations of the system, such as robustness against noise or maximum detection distance.

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses **Safety Artifacts: Unknown Unknowns?**

Identification of Root Cause by Process of Elimination

Idea: Show by process of elimination that the only possible explanation for the existence of inconsistent clusters are unknown unknowns.

Identification:

- Search for leaves that fulfill $S_n > S_{min}$ and $\Delta(s, n) \ge \theta$
- Check if their existence can be explained by other causes in the ML development cycle; if not, possible unknown unknown.

AI for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses

Safety Artifacts: Unknown Unknowns?

Identification of Root Cause by Process of Elimination

Idea: Show by process of elimination that the only possible explanation for the existence of inconsistent clusters are unknown unknowns.

Identification:

- Search for leaves that fulfill $S_n > S_{min}$ and $\Delta(s, n) \ge \theta$
- Check if their existence can be explained by other causes in the ML development cycle; if not, possible unknown unknown.

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses Safety Artifacts: Unknown Unknowns!

Identification and Mitigation of Unknown Unknowns

Idea: Show by process of elimination that the only possible explanation for the existence of inconsistent clusters are unknown unknowns.

Identification:

Inspect input features

Identify: "Noticeable abnormalities" (e.g., contradictions)

Mitigation:

Introduce new input feature

Retrain Model with updated input feature

Check the leaf(s) that fall within the previously identified, inconsistent cluster

 \rightarrow Please be aware that the new leaves can still result in <u>any</u> of the basic cases for DT leaves (as shown on slide 5), so the analysis might not end conclusively every time.

Discovered that carla. WeatherParameters.fog_density has a nonzero value for all low confidence cases within this cluster. → Included parameter as new input feature.

Al for Safety: How to use Explainable Machine Learning Approaches for Safety Analyses What has been done and what is left to do

Summary & Future Scope

- Developed an approach to use explainable ML for safety analyses of "Equivalence Classes of Equal Behavior" and "Unknown Unknowns"
- Equivalence Classes are derived from "naturally" converging data clusters after training
 - Successful validation (against collected data and system behavior) indeed indicate an identified "Equivalence Class of Equal Behavior"
- The starting point for Unknown Unknowns are inconsistent DT leaves that do not exceed the defined thresholds
 - By process of elimination the only possible explanation for their existence is an unknown unknown
 - Identification of this unknown unknown and subsequent integration into the development cycle can mitigate their effect
- So far, we were able to identify <u>one</u> unknown unknown by disentangling <u>one promising inconsistent data cluster</u>
- Identified Equivalence Classes cannot always be interpreted to be meaningful
- The requirement of explainable ML limits the applicability of this approach

Contact

Iwo Kurzidem Systems Safety Engineering Tel. +49 89 547088 - 350

Fraunhofer Institute for Cognitive Systems IKS Hansastraße 32 D-80686 Munich www.iks.fraunhofer.de/en

References:

[1] S. Burton, B. Herd, "Addressing uncertainty in the safety assurance of machinelearning", Frontiers in Computer Science Hypothesis and theory article, 2023

[2] International Organization for Standardization, "Road vehicles — Safety and cybersecurity for automated driving systems — Design, verification and validation (ISO/TR 4804:2020)", 2020.

[3] International Organization for Standardization, "Safety Of The Intended Functionality - SOTIF (ISO/-PAS 21448)", 2019.

[4] Kurzidem, Iwo, et al. "Safety Assessment: From Black-Box to White-Box." 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 2022.

