Formal Methods meet Neural Networks: A Selection

Tom Henzinger
IST Austria
Formal Methods

1. Static: ensure at design time that a system satisfies its specification

 1a. Verification: given system f and spec φ, does f satisfy φ?

 - deductive reasoning (logic, decision procedures)
 - algorithmic reasoning (model checking, abstract interpretation)
Formal Methods

1. Static: ensure at design time that a system satisfies its specification

 1a. Verification: given system f and spec φ, does f satisfy φ?
 - deductive reasoning (logic, decision procedures)
 - algorithmic reasoning (model checking, abstract interpretation)

 1b. Synthesis: given spec φ, find system f such that f satisfies φ.
 - syntax-guided (translation, search, learning)
 - semantics-guided (game solving, control)
Formal Methods

1. Static: ensure at design time that a system satisfies its specification

 1a. Verification: given system f and spec φ, does f satisfy φ?

 - deductive reasoning (logic, decision procedures)
 - algorithmic reasoning (model checking, abstract interpretation)
 \[\forall \text{traces} \]

 1b. Synthesis: given spec φ, find system f such that f satisfies φ.

 - syntax-guided (translation, search, learning)
 - semantics-guided (game solving, control)
 \[\forall \text{inputs} \exists \text{output} \]

2. Dynamic: watch at runtime if a system satisfies its specification

 2a. Runtime monitoring

 2b. Runtime enforcement
Formal Methods meet Neural Networks: A Selection

2. Closed-loop verification: prove properties of neural network controllers over discrete-time dynamical systems [NeurIPS’21, AAAI’22] (joint work with Lechner-Zikelic-Chatterjee)

3. Monitoring: runtime monitors as novelty detectors [ECAI’20, RV’21] (joint work with Lukina-Schilling)

4. Synthesis/enforcement: runtime monitors as specification enforcers [CAV’19] (joint work with Avni-Bloem-Chatterjee-Koenighofer-Pranger)
Open-Loop Verification

$\varphi(x) \land f(x) = y \Rightarrow \psi(y)$

Feed-forward neural network f with weights in \mathbb{R}
Open-Loop Verification

\[
\varphi(x) \land f(x) = y \Rightarrow \psi(y)
\]

\[
\varphi(x) \land [f]_{\text{float32}}(x) = y \Rightarrow \psi(y)
\]

\[
\varphi(x) \land [f]_{\text{int8}}(x) = y \Rightarrow \psi(y)
\]

Feed-forward neural network \(f \) with weights in \(\mathbb{R} \)

Input \(x \) \hspace{1cm} \text{Output} \(y \)

NP-complete [Katz’17]

PSPACE-hard [AAAI’21]
Open-Loop Verification

1. Abstraction domains over \mathbb{R}^n (intervals, zonotopes, polyhedra)
2. Constraint solvers (MILP, Reluplex, NRA)

Feed-forward neural network f with weights in \mathbb{R}

Input x → $\varphi(x) \land f(x) = y \Rightarrow \psi(y)$

Output y

$\varphi(x) \land [f]_{\text{float32}}(x) = y \Rightarrow \psi(y)$ [Ehlers, Katz et al., Bunel et al., Dutta et al., Mirman et al., Wang et al., Chang et al., Tjeng et al., etc.]

$\varphi(x) \land [f]_{\text{int8}}(x) = y \Rightarrow \psi(y)$ [Baranowski et al., TACAS’20, AAAI’21]
Open-Loop Verification

\[\forall x' \quad d(x, x') < \varepsilon \implies f(x) = f(x') \]

\(\varepsilon \)-robustness at input \(x \):

Robustness is not preserved by \(\cdot \)\text{_float}_k \) nor by \(\cdot \)\text{_int}_k \) nor is robustness monotonic in \(k \) [TACAS'20, Jia-Rinard].
Closed-Loop Verification

Safety: unsafe state set X_U is never entered (infinite time horizon!).

Progress (stability): stable state set X_S is eventually entered with probability 1 ("almost surely") and never left.
Discrete-Time Stochastic Dynamical System

<table>
<thead>
<tr>
<th>Component</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>State space</td>
<td>$X \subseteq \mathbb{R}^n$</td>
</tr>
<tr>
<td>Control policy</td>
<td>$\pi : X \rightarrow \mathcal{D}(U)$</td>
</tr>
<tr>
<td>Disturbance</td>
<td>$\omega \sim \mathcal{D}(W)$</td>
</tr>
<tr>
<td>Initial state</td>
<td>$x_0 \in X$</td>
</tr>
<tr>
<td>Transition function</td>
<td>$f : X \times U \times W \rightarrow X$</td>
</tr>
</tbody>
</table>

Deterministic control policy: given by neural network.

Stochastic control policy: by Bayesian neural network (BNN).
Safety Certificates: Inductive Invariants

Inductive ("positive") invariant:

continuous function $S: X \to \mathbb{R}$ such that

(1) $S(x_0) > 0$
(2) for all $x \in X, u \sim \pi(x)$, and ω, if $S(x) > 0$ then $S(f(x, u, \omega)) > 0$
(3) for all unsafe states $x \in X_U$, $S(x) \leq 0$

If there exists an inductive invariant, then the closed-loop system is safe.
Safety Certificates: Inductive Invariants

Inductive ("positive") invariant:

continuous function \(S: X \to \mathbb{R} \) such that

1. \(S(x_0) > 0 \)
2. for all \(x \in X, u \sim \pi(x) \), and \(\omega \), if \(S(x) > 0 \) then \(S(f(x, u, \omega)) > 0 \)
3. for all unsafe states \(x \in X_U \), \(S(x) \leq 0 \)

If there exists an inductive invariant, then the closed-loop system is safe.

BNNs are usually not safe (because of weight distributions with unbounded support), but can be made safe by rejection sampling (cut off support at \(\mu \pm \delta \) for mean weight \(\mu \)).
Progress Certificates: Ranking Supermartingales

Ranking supermartingale [Chakarov-Sankaranarayanan]:

continuous function $P: X \to \mathbb{R}$ such that

(1) for all $x \in X$, $S(x) \geq 0$

(2) there exists $\varepsilon > 0$ such that for all unstable $x \in X \setminus X_S$, $u \sim \pi(x)$, and ω,

$$\mathbb{E}_{u,\omega}[P(f(x,u,\omega))] \leq P(x) - \varepsilon$$

(3) for all stable $x \in X_S$, $u \sim \pi(x)$, and ω, $f(x,u,\omega) \in X_S$

If there exists a ranking supermartingale, then the closed-loop system is almost surely stable. Moreover, we can bound the stabilization time [AAAI’22].
Learning and Verifying Certificates

LEARNER

Pretraining from sample traces

Loss function encodes verification conditions (1)-(3)

Counterexamples provide new training data

VERIFIER

Safety/progress certificate S, P

Constraint solvers:
- Mixed integer linear programming
- Reluplex [Katz et al.]
- Nonlinear real arithmetic
Software Needs Watchdogs

Tom Henzinger
IST Austria
The Vision:
Ubiquitous **Online Black-Box Monitoring** of Software

Bounded number of monitor operations per observation ("real time" [Rabin'63]).
Two Megatrends that Favor Runtime Verification

1. Ever increasing hardware parallelism
 - many-core processors, compute clusters, data centers
 - not all hardware resources will go into performance
 (some should go into assurance)

2. Ever increasing software complexity
 - machine-learned components, cloud connectivity
 - the static “verification gap” will only increase
 (software complexity grows faster than verification capability)
The Future Use of CPUs and GPUs ?!
Two Observations about Runtime Verification

1. Static verification is about all possible infinite traces, runtime verification is about one long observed trace.

- Formalisms and methods should reflect this difference (the difference between emptiness and membership checking; over the long run, possibility becomes probability).
- Opening for quantitative, statistical, and approximate methods (distance measures between traces rather than between systems).
Static versus Runtime Verification

system \subseteq \text{trace} \text{ satisfies distance}

specification \in \text{trace} \text{ satisfies distance}
Two Observations about Runtime Verification

1. Static verification is about all possible infinite traces, runtime verification is about one long observed trace
 - formalisms and methods should reflect this difference (the difference between emptiness and membership checking; over the long run, possibility becomes probability)
 - opening for quantitative, statistical, and approximate methods (distance measures between traces rather than between systems)

2. To increase public acceptance and trust of monitors, they must be third-party + unintrusive + online
 - third-party means that system and monitor are designed independently
 - unintrusive means black-box and low-overhead
 - online means real-time and best-effort
Brief History of Boolean Monitoring

Observations \(\Sigma = \{a, b, t, o\} \)
Response \(\Box(a \rightarrow \Diamond b) \)

Trace \(o t o a t o b o o t o a o o a o t o t o o o b o t o ... \)
Boolean verdict \(\perp \perp \perp \perp ... \)

Response is live (every finite trace can be extended to satisfy response).
Response is co-live (every finite trace can be extended to violate response).

Response is not Pnueli-Zaks monitorable
(no finite trace allows a positive or negative verdict).

PZ monitorable \(\supseteq \) Boolean combinations of safety properties
[Bauer-Leucker-Schallhart, Falcone-Frnandez-Mounier, Diekert-Leucker].
Quantitative Monitoring

Observations $\Sigma = \{a, b, t, o\}$
Max response time $\min_t \square(a \rightarrow \diamond \leq_t b)$

Trace $o t t o a t o b o o t o a o o a o t o t o o o b o t o o ...$
Quantitative verdict $0 1 2$

$v \leftarrow 0$
a
$x \leftarrow 0$
a, o

b, t, o
b
$v \leftarrow \max(v, x)$

$x \leftarrow x + 1$
t

counter
Quantitative Monitoring

Observations $\Sigma = \{a, b, t, o\}$

Max response time $\min_t \Box(a \rightarrow \Diamond \leq t b)$

Trace $ottaatobootoaooaototoobotto...$

Quantitative verdict
- 0
- 1
- 2

Approximate verdict
- 0
- 1
- 1

Delayed verdict
- 0
- 1
- 2

Ideal verdict

Achievable verdict with given resources

Distance
Quantitative Monitoring [LICS’21]

<table>
<thead>
<tr>
<th>Observation alphabet</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value cpo</td>
<td>Λ</td>
</tr>
<tr>
<td>Quantitative property</td>
<td>(p : \Sigma^\omega \rightarrow \Lambda)</td>
</tr>
<tr>
<td>Verdict function</td>
<td>(v : \Sigma^* \rightarrow \Lambda)</td>
</tr>
<tr>
<td>Infinite trace</td>
<td>(w \in \Sigma^\omega)</td>
</tr>
</tbody>
</table>

Quantitative monitoring can be about limits:
verdict \(v \) monitors property \(p \) on trace \(w \) from below if \(\limsup_i \{v(w_{0..i})\} = p(w) \).

Quantitative monitoring can be universal:
property \(p \) is monitorable from below if \(\exists v : \forall w : v \) monitors \(w \) from below.

Quantitative monitoring can be approximate:
verdict \(u \) approximates verdict \(v \) with error \(\epsilon \) if \(\forall w : \forall i : |v(w_{0..i}) - u(w_{0..i})| \leq \epsilon \).
Quantitative Monitoring

Compare monitors with regard to

1. precision
2. resource use
Expressiveness of Counter Monitors

Observations
\[\Sigma_k = \{0, \ldots, k\} \]

Traces
\[\Sigma_k^\omega \]

3 3 2 3 3 2 2 1 3 2 1 0 1 2 3 3 2 1 0 0 3 3 …

Property
\[P_k = \{ w \in \Sigma_k^\omega : \forall \pi < w : \forall i < k : \#(i + 1, \pi) \geq \#(i, \pi)\} \]

“Every prefix contains as many 1s as 0s, as many 2s as 1s, as many 3s as 2s, etc.”

Theorem [LICS’18]:
For all \(k \), the property \(P_k \) can be real-time monitored with \(k + 1 \) counters but not with \(k \) counters.

(In contrast, in computability every Turing machine can be simulated by two counters.)
Monitoring Average Response Time

\[v(x, k) = \frac{x}{k} \]

Requires addition and division. Led to original results in static verification [SAS’16].
Quantitative Monitoring in Continuous Time

- Average response time
- Request signal
- Grant signal

Graph showing time points t1, t1+2, t2, t2+1 with different signals and variables.

- Slope 1 variable ("clock")
- Slope ½ variable
Quantitative Monitoring

Compare monitors with regard to

1. precision
2. resource use
3. strength of assumptions

An assumption $A \subseteq \Sigma^\omega$ restricts the universe of possible traces [RV’20]. How do assumptions arise?

1. Knowledge about the system (predictive monitoring)
2. Knowledge about the environment (e.g. $\Box \Diamond t$)
3. Information from other monitors (decentralized monitoring)
Limit Monitoring [CSL’20]

- mode \(m(\pi) \) is the most common letter in \(\pi \in \Sigma^* \)
- for \(w \in \Sigma^\omega \) generated by finite connected Markov chain (the “assumption”), \(m(w) = \lim_i m(w_{0..i}) \) converges with probability 1

Real-time monitoring the mode: requires \(|\Sigma|\) counters

Limit monitoring the mode: can be done by 4 counters

\[
\alpha_0 \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6
\]

- partition \(w \in \Sigma^\omega \) into segments \(\alpha_0 \alpha_1 \alpha_2 \alpha_3 \ldots \) of increasing length
- while reading \(w \), with each \(\alpha_i \) maintain a current “hypothesis” \(m_i \in \Sigma \) for the mode
- cycle round-robin through the letters in \(\Sigma \), looking at one letter \(\sigma_i \) per segment \(\alpha_i \)
- if \(\sigma_i \) occurs more often than \(m_i \) in \(\alpha_i \), then \(m_{i+1} = \sigma_i \) else \(m_{i+1} = m_i \)
Differential Monitoring [RV’21]

- assurance through redundancy ("overengineering")
- programs as specifications
Autonomous Vehicles: Monitors as Shields

- neural network computes control actions
- monitor overrides actions that violate safety

[Bloem-Koenighofer-Koenighofer-Wang]

e.g. override NN if vehicle would leave the road
Beyond Safety: Quantitative Shields [CAV’19]

- quantitative rewards and interference penalties
- shield specification using weighted automaton
- shield synthesis by solving stochastic games (controller+plant against shield)
Planning: Monitors as Arbiters

- neural network computes short-term actions
- symbolic controller follows long-term plan
- monitor arbitrates both decisions

“thinking slow”
“thinking fast”
e.g. obstacle avoidance
Classification: Monitors as Novelty Detectors [RV’21]

- Monitor watches if predictions are similar to previously observed patterns.
- When novelties are detected, network may need retraining.
Algorithmic Fairness: Monitors as Watchdogs

Demographic parity

\[
\frac{\Pr(\text{output} = 1 \mid \text{protectedInputAttribute} = 0)}{\Pr(\text{output} = 1 \mid \text{protectedInputAttribute} = 1)} \approx 1
\]

can be monitored using frequency counters.
Summary

Static formal methods have scalability issues for neural networks.

A promising approach is the LEARNER + VERIFIER architecture, which uses machine learning for hypothesis generation of correctness certificates.

Runtime methods can monitor not only safety violations, but also quality, limits, and fairness. They can enforce not only safety (shielding), but also progress (planning).
[NeuIPS’21] Infinite time horizon safety of Bayesian neural networks
[AAAI’22] Stability verification in stochastic control systems via neural network supermartingales

[TACAS’20] How many bits does it take to quantize your neural network?
[AAAI’21] Scalable verification of quantized neural networks

[CAV’19] Runtime optimization for learned controllers
[RV’21] Into the unknown: Active monitoring of neural networks