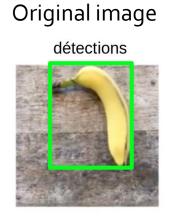


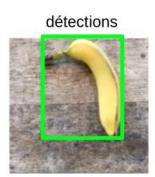
Benchmarking and deeper analysis of adversarial patch attack on object detectors

Pol Labarbarie (IRT SystemX) Adrien Chan-Hon-Tong (ONERA) Stéphane Herbin (ONERA) Milad Leyli-Abadi (IRT SystemX)

Classical adversarial attacks



Possible scenarios of a classical adversarial attack on object detector.



détections

détections

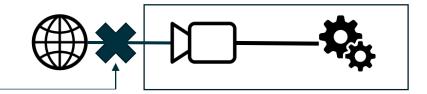
Nothing happened

Changed the detected object class

Suppressed the detection

Physically feasible?

• Without direct access to sensors



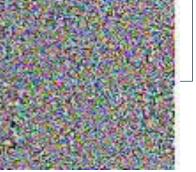


Image captured by embedded sensors

détections

: Wrong class detection : Good detection

Example of a classical adversarial attack perturbating image pixels captured by autonomous vehicle embedded sensors.

How to exactly perturbate image pixels?

Adversarial patch attacks

Differences between classical attacks and patch attacks:

- Unconstrained in magnitude.
- Constrained in space.

Printed and placed into the scene

Adversarial patch

Image captured by embedded sensors

détections

Wrong class

: Wrong class detection : Good detection

Suppress detection

State-of-the-art patch attacks

• Lee *et al.* (Lee *et al.*, 2019): maximizing the YOLO loss over the ground truths.

• Dpatch (Liu *et al.*, 2018): minimizing the YOLO loss but redefined the ground truths boxes at the patch localization.

: ground truths

• Saha *et αl.* (Saha *et αl.*, 2020): minimizing the probability of one chosen class.

Criticality of patch attacks

It seems to be a serious threat to consider

But

How to measure the real criticality of patch attacks?

: Wrong class detection: Good detection

Possible scenarios of a classical adversarial attack on object detector.

Contribution

• Definition of categories of evaluation criteria

Category	Setting	Description
Radiometric	Varying weather conditions Filters	Brightness, snow, rain, JPEG transformations
Geometric	Rescaling Crop Affine transformations Distance w.r.t learning position	*** *** Rotations Shift from learning position
Transferability	Detector sensitivity Detector generalization	Sensitivity of a detector parameters to APAs Generalisation of an APA through multiple detectors

Table of evaluation settings by category and their brief description.

Example of settings

Example:

• Patch trained at top-left position

Measuring:

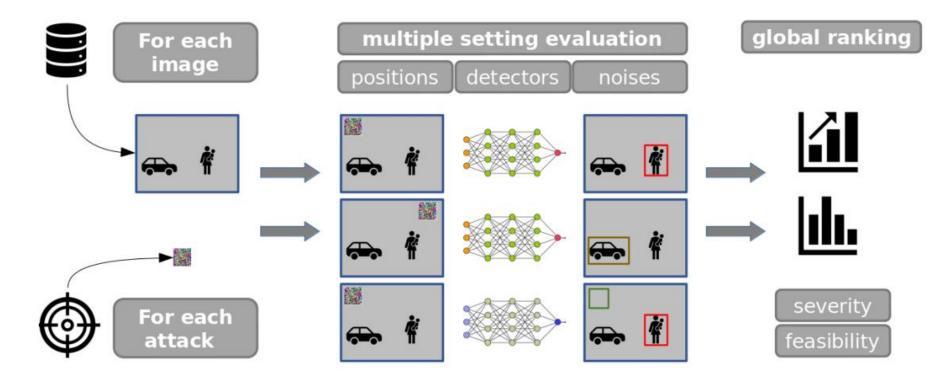
Category	Setting	Description
Radiometric	Varying weather conditions Filters	Brightness, snow, rain, JPEG transformations

test

Category	Setting	Description	
Geometric	Rescaling	***	
	Crop	***	
	Affine transformations	Rotations	
	Distance w.r.t learning position	Shift from learning position	

Contribution (proposed evaluation pipeline)

• A framework to rank patch attacks



Structure of the proposed pipeline to evaluate APAs.

Experimental setup

Configurations:

- PASCAL VOC test dataset, YOLOv2 detector
- Evaluating patch contextual effects
- Attacking the *person* class
- Patch learned at top-left location and applied at the same position by default

Three state-of-the-art patch attacks:

- Dpatch (Liu *et al.*, 2018)
- Lee *et al.* (Lee *et al.*, 2019)
- Saha *et al.* (Saha *et al.*, 2020)

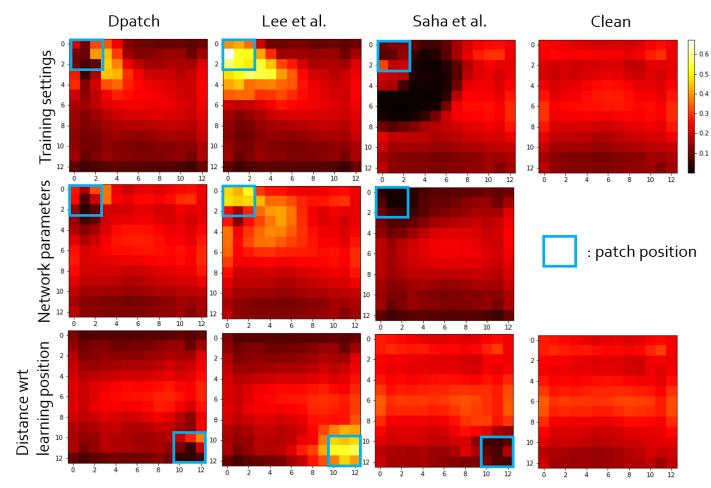
Experimental results (comparison table)

Setting	Attack	Attacked AP (%) with f.p without f.p		Cleaned AP (%)
c	Dpatch	71.42	75.01	76.13
Same as training	Lee <i>et al.</i>	10.56	74.36	
training	Saha et al.	59.36	59-47	
	Dpatch	73.34	75.25	
Other initialization	Lee <i>et al.</i>	60.35	75.42	
	Saha et al.	75.55	75.55	
Shift from	Dpatch	70.61	77.87	
learning	Lee <i>et al.</i>	53.02	78.73	80.01
position	Saha et al.	74.28	75.87	

Table of the evolution of the AP score for different setting evaluation and for different APA.

- Better contextual effects for attack Saha et al. given training settings
- Dpatch and Lee *et al.* trying to be the salient object of images limiting their contextual effects

Experimental results



Two strategies:

 Saha *et al.* : remove detections *i.e* reduce person class probability everywhere

• Dpatch and Lee *et al.* : create false alarms *i.e* increase person class probability around or on the patch

Person class probability obtained by averaging anchors in cells over test set.

- Our framework allows us to evaluate the real impact of APAs
- Comprehensive analysis of state-of-the-art adversarial patch attacks through a set of proposed evaluation settings
- Dpatch and Lee *et αl.* have low contextual effects limiting their criticality
- Current attacks are sensitive to setting change, lowering the practical risk of current APA's

- [Song et al., 2018] Dawn Song et al., Physical adversarial examples for object detectors. In 12th USENIX workshop on offensive technologies (WOOT 18), 2018.
- [Saha et al., 2020] Aniruddha Saha et al., Role of spatial context in adversarial robustness for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 784–785, 2020.
- [Lee and Kolter, 2019] Mark Lee and Zico Kolter. On physical adversarial patches for object detection. Preprint arXiv:1906.11897, 2019.
- [Liu et al., 2018] Xin Liu et al., Dpatch: An adversarial patch attack on object detectors.
 SafeAI 2019 (AAAI Workshop on Artificial Intelligence Safety), 2018.

www.confiance.ai contact@irt-systemx.fr