

Al Safety 2023 21 August 2023

Unsupervised Unknown Unknown Detection in Active Learning

Prajit T Rajendran (CEA LIST), Huascar Espinoza (ECSEL JU), Agnes Delaborde (LNE), Chokri Mraidha (CEA LIST)

Al Safety 2023 | Prajit T Rajendran

List Active learning

- **CONS:** Selecting the right points to query is important
- **QUERY TYPES:** Random, uncertainty, diversity, consistency

list ^{Clatech}

Active learning approaches in companies

Credits: https://kargarisaac.github.io/blog/

Unknown unknowns

 In machine learning, unknown unknown (UU) data points typically involve rare and unexpected scenarios where the models may make wrong predictions, potentially leading to catastrophic situations

list

Ceatech

- Closely tied to concepts of anomalies, outliers in datasets; Difference being UUs are high confidence mispredictions
- Detecting UUs is essential to ensure machine learning systems' reliability and robustness and avoid unexpected failures in real-world safety-critical applications
- **QUESTION:** How can we detect unsafe data points + unknown unknowns in a stream-based setting + can this be feasible in active learning approaches? (*Safety, data efficiency tradeoff*)

Unknown Unknown Detection in Active Learning (U3DAL)

 Active learning requires uncertainty and diversity thresholds

list Ceatech

- Low entropy, high diversity points can be captured by thresholds
- These points may constitute unknown
 unknowns
- HYPOTHESIS: Active learning thresholds may be used to determine unknown unknowns

Known	Known				
knowns	unknowns				
Low entropy,	High entropy,				
low diversity	high diversity				
Unknown	Unknown				
knowns	unknowns				
High entropy,	Low entropy,				
low diversity	high diversity				

U3DAL Block Diagram

- Model M is trained with some initial available labelled data
- Data stream arrives and at each point, a decision is made to accept or reject for labelling based on a threshold
- If both uncertainty and diversity metrics are high, the data point is sent to be annotated
- If the thresholds for uncertainty and diversity have been set, low diversity and high uncertainty points are detected as unknown unknowns

U3DAL Experiments

- Mini ImageNet dataset, filtered out 15 classes, 9000 images corresponding to confusing points from ImageNet-A [1]
- ImageNet-A is a set of images labelled with ImageNet labels that were obtained by collecting new data and keeping only those images that ResNet-50 models fail to correctly classify
- 1000 initial training points, 759 "confusing" points from ImageNet-A
- Rest of data shuffled, fed as stream

list

ceatech

• Baselines: Local outlier factor [2], isolation forest [3] which are used to detect outliers

[1] Hendrycks, Dan, et al. "Natural adversarial examples." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

[2] Breunig, Markus M., et al. "LOF: identifying density-based local outliers." *Proceedings of the 2000 ACM SIGMOD international conference on Management of data*. 2000.

[3] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422, doi: 10.1109/ICDM.2008.17.

Ladybug

Ladybug – confusing point

U3DAL Results

Table 1

Classification accuracy over the train set and anomaly set for different acquisition functions (15-class problem)

No. of data points	Random		Uncert	ainty	Diversity		
used for training	Validation set	Anomaly set	Validation set	Anomaly set	Validation set	Anomaly set	
1000	0.261	0.052	0.261	0.052	0.261	0.052	
2000	0.387	0.085	0.417	0.076	0.385	0.088	
3000	0.449	0.105	0.432	0.081	0.404	0.096	
4000	0.516	0.118	0.506	0.098	0.428	0.113	

- Table 1 illustrates that the performance on the validation set and the "anomaly set" were very different
- There was a significant increase in accuracy of the classification task in the validation set as the number of training points increased, as is the expected behaviour
- For the anomaly set, the performance remained poor, demonstrating that they consist of mainly confusing anomalous points which could be potentially unknown unknowns

Threshold	D=0.5	D=0.6	D=0.7	
U=0.5	91	69	56	
U=0.6	116	85	68	
U=0.7	122	88	70	

Threshold	D=0.5	D=0.6	D=0.7
U=0.5	84	62	46
U=0.6	96	69	52
U=0.7	108	77	58

Threshold	D=0,5	D=0.6	D=0.7
U=0.5	90	69	55
U=0.6	100	76	57
U=0.7	104	78	59

Table 2

Variation of number of unknown unknown data points detected as a function of the uncertainty threshold (U) and diversity threshold (D), acquisition function = Random

Table 3

tected as a function of the uncertainty threshold (U) and tected as a function of the uncertainty threshold (U) and diversity threshold (D), acquisition function = Uncertainty

Table 4

Variation of number of unknown unknown data points de- Variation of number of unknown unknown data points dediversity threshold (D), acquisition function = Diversity

- Tables 2, 3 and 4 illustrate the effect of the uncertainty and diversity ٠ thresholds on the number of UUs detected
- In the case of all acquisition functions, U=0.7 and D=0.5 were ٠ observed to be the best. This illustrates that having different dimensions for each makes sense rather than a combined equal threshold
- The thresholds are specific to each dataset, model, type of uncertainty ٠ score, diversity score used
- Adaptive thresholds, which change based on the arriving distribution ٠ could hypothetically increase the detection rate

U3DAL Results

Table 5

No. of data points	Random			Uncertainty			Diversity		
used for training	IF	LOF	U3DAL	IF	LOF	U3DAL	IF	LOF	U3DAL
1000	4	17	35	5	18	55	15	17	48
2000	9	29	59	22	24	58	30	26	66
3000	16	30	82	27	29	93	37	31	82
4000	23	33	122	38	35	108	44	44	104

Comparison of the number of unknown unknown data points detected by LOF, Isolation forest, U3DAL

- Table 5 compares the performance between Isolation forest, local outlier factor and U3DAL in UU detection
- IF and LOF perform better when diversity based measure is used to select new data points for labelling because they are diversity based detection methods themselves
- U3DAL outperforms IF and LOF in all acquisition functions because the confusing data points in the "anomaly set" aren't just different in terms of diversity scores/distance but also in terms of the model's knowledge or lack thereof

- Proposed a simple and novel method- U3DAL to detect unknown unknowns in an unsupervised manner in a stream-based active learning setting
- Conducted experiments on the Mini ImageNet and ImageNet-A datasets to determine efficacy of UU detection
- Results demonstrate that U3DAL outperforms existing methods like isolation forest and LOF in identifying confusing anomalous data points
- Future work: Impact of adaptive thresholds for uncertainty and diversity in UU detection

Thank you

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019