

Fraunhofer-Institut für Kognitive Systeme IKS

AlSafety-SafeRL 2023 Workshop (IJCAI) August 19–21, 2023, Macao, SAR, China

Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection

Nicola Franco, Daniel Korth, Jeanette Miriam Lorenz, Karsten Rocher, Stephan Günnemann

- Classifier f(x)
- Confidence, e.g. h(x) = SoftMax(f(x))
- In-distribution (ID) $x \sim \mathcal{D}_{in} (\bullet, \bullet)$

- Classifier f(x)
- Confidence, e.g. h(x) = SoftMax(f(x))
- In-distribution (ID) $x \sim \mathcal{D}_{in} (\bullet, \bullet)$
- Adversarial attack \tilde{x} (ℓ_2 -norm)

- Classifier f(x)
- Confidence, e.g. h(x) = SoftMax(f(x))
- In-distribution (ID) $x \sim \mathcal{D}_{in} (\bullet, \bullet)$
- Adversarial attack \tilde{x} (ℓ_2 -norm)
- Out-Of-Distribution (OOD) $z \sim \mathcal{D}_{out}$ (•)

- Classifier f(x)
- Confidence, e.g. h(x) = SoftMax(f(x))
- In-distribution (ID) $x \sim \mathcal{D}_{in} (\bullet, \bullet)$
- Adversarial attack \tilde{x} (ℓ_2 -norm)
- Out-Of-Distribution (OOD) $z \sim \mathcal{D}_{out}$ (•)

Background - Certified Robustness with Randomized Smoothing

Figure: Randomized Smoothing [Cohen et al., 2019, Lecuyer et al., 2019]

Background - Certified Robustness with Randomized Smoothing

Figure: Randomized Smoothing [Cohen et al., 2019, Lecuyer et al., 2019]

Figure: Diffusion Denoised Smoothing [Salman et al., 2020, Carlini et al., 2023]

Our Contribution - Certified Robustness for the Maximum Confidence

Theorem

Let $F : \mathbb{R}^d \to \mathbb{P}(\mathcal{Y})$ be any soft classifier and G be its associated smooth classifier defined as:

$$G(x) \stackrel{\text{def}}{=} \mathop{\mathbb{E}}_{\delta \sim \mathcal{N}(0, \sigma^{2}I)} \left[F(x + \delta) \right],$$

with $\sigma > 0$. If $p = \max_{y \in \mathcal{Y}} G(x)_y > 1/2$, then, we have that:

$$\max_{y\in\mathcal{Y}}G(x+\delta)_y\leq\sqrt{\frac{2}{\pi}}\Phi^{-1}(p)+p,$$

for every $\|\delta\|_2 < \sigma \Phi^{-1}(p)$.

Our Contribution - Certified Robustness for the Maximum Confidence

Theorem

Let $F : \mathbb{R}^d \to \mathbb{P}(\mathcal{Y})$ be any soft classifier and G be its associated smooth classifier defined as:

$$G(x) \stackrel{\text{def}}{=} \mathop{\mathbb{E}}_{\delta \sim \mathcal{N}(0, \sigma^2 I)} \left[F(x + \delta) \right],$$

with $\sigma > 0$. If $p = \max_{y \in \mathcal{Y}} G(x)_y > 1/2$, then, we have that:

$$\max_{y\in\mathcal{Y}}G(x+\delta)_{y}\leq\sqrt{\frac{2}{\pi}}\Phi^{-1}(p)+p,$$

for every $\|\delta\|_2 < \sigma \Phi^{-1}(p)$.

Figure: Distribution of the certified smooth ($\sigma = 0.12$) scores (*maximum confidence*) on ID (CIFAR10) and OOD (all other datasets) samples.

DISTRO: DIffusion denoised SmooThing for Robust OOD detection

Figure: Overview of DISTRO

■
$$\mathbb{P}(y|x) = \mathbb{P}(y|x,i)\mathbb{P}(i|x) + \frac{1}{K}(1 - \mathbb{P}(i|x))$$

■ $\mathbb{P}(y|x,i) = h(\texttt{denoise}_{once}(x + \delta;t))$
■ $\mathbb{P}(i|x) = \frac{1}{1 + e^{-g(x)}}$

DISTRO: DIffusion denoised SmooThing for Robust OOD detection

Asymptotic Confidence

Figure: Two categories: *standard* (continuous line) and *guaranteed* (dashed line).

Comparison between this work and previous methods

	In-Dis	tribution (ID)	Accuracy	Out-Of-Distribution (OOD) Detection						
Methods	Clean	Adversarial ℓ_∞	$\stackrel{\rm Certified}{\ell_2}$	Clean	Adversarial ℓ_∞	rial Certified $\ell_\infty \ \ell_2$ u		Asymptotic underconfidence		
- Standard										
OE [Hendrycks et al., 2019]	\checkmark			\checkmark						
VOS [Du et al., 2021]	\checkmark			\checkmark						
LogitNorm [Wei et al., 2022]	\checkmark			\checkmark						
- Adversarial										
ACET [Hein et al., 2019]	(\checkmark)	\checkmark		\checkmark	(√)					
ATOM [Chen et al., 2021]	(√)			\checkmark	(√)					
- Guaranteed										
GOOD [Bitterwolf et al., 2020]					\checkmark	\checkmark		\checkmark		
ProoD [Meinke et al., 2022]	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark		
DISTRO (Our)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

In-Distribution Results

Adversarial Accuracy

- AutoAttack with ℓ_{∞} -norm attacks
- budget $\epsilon \in \{2/255, 8/255\}$

Certified Accuracy

- Randomized Smoothing
- 10'000 Gaussian distributed samples
- failure probability of 0.001
- All R > 0 are considered

Table: **ID Accuracy**: Results of clean, adversarial and certified accuracy (%) on the CIFAR10 test set. The grayed-out models have an accuracy drop greater than 3% relative to the model with the highest accuracy.

Mathod	Clean	Adversa	rial (ℓ_∞)	Certified (ℓ_2)			
Method	Clean	$\epsilon = 2/255$	$\epsilon = 8/255$	$\sigma=0.12$	$\sigma=0.25$		
Plain*	95.01	2.16	0.00	28.14	14.17		
OE*	95.53	1.97	0.00	31.48	10.88		
VOS [†]	94.62	2.24	0.00	13.13	10.02		
LogitNorm [‡]	94.48	2.65	0.00	12.53	10.25		
ATOM*	92.33	0.00	0.00	0.00	0.00		
ACET*	91.49	69.01	6.04	57.13	12.48		
GOOD [*] ₈₀	90.13	11.65	0.23	17.33	10.31		
$ProoD^*\;\Delta=3$	95.46	2.69	0.00	33.92	13.50		
DDS	95.55	72.97	24.09	82.26	64.58		
DISTRO (our)	95.47	73.34	27.14	82.77	65.63		

Results for ID: CIFAR10

Table: Robust OOD detection. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test sets, clean AUC, guaranteed (GAUC), adversarial AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adversarial AUPR (AAUPR), clean FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR). Averaging was performed on a variety of OOD datasets. We consider MSP [Hendrycks and Gimpel, 2017] for all methods and metrics (with temperature T = 1). The guaranteed ℓ_2 -norm is computed for $\sigma = 0.12$ for all R > 0, while the adversarial and guaranteed ℓ_{∞} -norm are computed for $\epsilon = 0.01$. The grayed-out models have an accuracy drog greater than 3% relative to the model with the highest accuracy. Bold numbers are superior results.

ID: CIFAR10	Acc.	AUC↑	GA	JC↑	AAUC↑	AUPR↑	GAL	JPR↑	AAUPR↑	FPR↓	GFI	PR↓	AFPR↓
			ℓ_2	ℓ_∞	ℓ_{∞}		ℓ_2	ℓ_{∞}	ℓ_{∞}		ℓ_2	ℓ_∞	ℓ_{∞}
- Standard													
Plain*	95.01	94.56	48.86	0.00	24.52	99.42	60.05	0.00	82.30	35.72	100.0	100.0	96.72
OE*	95.53	98.78	46.88	0.00	37.91	99.87	63.08	0.00	84.49	4.71	100.0	100.0	70.26
VOS†	94.62	90.82	30.13	0.00	20.62	99.15	41.62	0.00	81.80	61.66	94.10	100.0	100.0
LogitNorm [‡]	94.48	96.71	40.73	0.00	39.76	99.64	49.31	0.00	86.47	13.95	100.0	100.0	91.10
- Adversarial													
ACET*	91.48	97.24	60.21	0.00	93.01	99.68	76.22	0.00	99.16	13.82	95.65	100.0	32.15
ATOM*	92.33	98.82	97.15	0.00	44.65	99.86	95.51	0.00	85.74	4.14	5.04	100.0	62.65
- Guaranteed													
$GOOD_{80}^*$	90.13	93.12	36.45	57.52	78.11	99.22	52.31	89.54	95.19	30.00	100.0	72.45	47.55
$\mathrm{ProoD}^*\Delta=3$	95.46	98.72	52.36	59.56	64.22	99.87	66.53	93.89	94.52	5.49	100.0	100.0	86.49
DISTRO (our)	95.47	98.71	53.37	59.49	89.36	99.87	68.45	93.88	98.70	5.44	100.0	100.0	51.15

Results for ID: CIFAR100

Table: Robust OOD detection. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test sets, clean AUC, guaranteed (GAUC), adversarial AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adversarial AUPR (AAUPR), clean FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR). Averaging was performed on a variety of OOD datasets. We consider MSP [Hendrycks and Gimpel, 2017] for all methods and metrics (with temperature T = 1). The guaranteed ℓ_2 -norm is computed for $\sigma = 0.12$ for all R > 0, while the adversarial and guaranteed ℓ_{∞} -norm are computed for $\epsilon = 0.01$. The grayed-out models have an accuracy drop greater than 3% relative to the model with the highest accuracy. **Bold** numbers are superior results.

ID: CIFAR100	Acc.	AUC↑	GAI	JC↓	AAUC↑	AUPR↑	GAL	JPR↑	AAUPR↑	FPR↓	GFI	PR↓	AFPR↓
			ℓ_2	ℓ_{∞}	ℓ_{∞}		ℓ_2	ℓ_{∞}	ℓ_{∞}		ℓ_2	ℓ_{∞}	ℓ_{∞}
- Standard													
Plain*	77.38	81.60	30.63	0.00	16.98	97.84	45.10	0.00	81.27	82.52	100.0	100.0	100.0
OE*	77.28	90.41	39.87	0.00	22.79	98.90	49.46	0.00	81.96	47.49	100.0	100.0	87.74
- Adversarial					,								
ACET*	74.47	90.27	36.36	0.00	27.68	98.84	43.50	0.00	82.60	44.11	90.41	100.0	74.99
ATOM*	71.73	91.72	84.38	0.00	31.52	98.88	79.95	0.00	83.36	30.81	30.09	100.0	73.69
- Guaranteed					,								
$\mathrm{ProoD}^*\Delta=1$	76.79	90.90	42.83	37.67	43.81	98.91	50.90	89.66	90.46	42.12	100.0	100.0	97.11
DISTRO (our)	76.83	90.89	47.74	37.53	65.16	98.90	55.26	89.63	94.78	40.94	100.0	100.0	87.81

Conclusion

Table: Overall average between the metrics for CIFAR10/100.

Method	Average					
	C-10	C-100				
Plain	44.02	34.48				
OE	50.12	40.42				
VOS	38.60	-				
LogitNorm	46.31	-				
ACET	59.64	41.86				
ATOM	64.79	54.38				
GOOD ₈₀	64.74	-				
${\rm ProoD}\;\Delta=3$	64.09	52.51				
DISTRO (our)	77.08	59.95				

- Surprisingly, ATOM shows similar results as ProoD and GOOD.
- It is evident that the l₂-norm GAUC (and GAUPR) diverge from zero when standard OOD detection models are considered.

Code on Github

References I

Bitterwolf, J., Meinke, A., and Hein, M. (2020).

Certifiably adversarially robust detection of out-of-distribution data.

In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Carlini, N., Tramer, F., Zico Kolter, J., et al. (2023).

(certified !!) adversarial robustness for free!

In Submitted to The Eleventh International Conference on Learning Representations. under review.

Chen, J., Li, Y., Wu, X., Liang, Y., and Jha, S. (2021).

Atom: Robustifying out-of-distribution detection using outlier mining. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 430–445. Springer.

Cohen, J., Rosenfeld, E., and Kolter, Z. (2019).

Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning, pages 1310–1320. PMLR.

Du, X., Wang, Z., Cai, M., and Li, Y. (2021).

Vos: Learning what you don't know by virtual outlier synthesis. In International Conference on Learning Representations.

References II

Hein, M., Andriushchenko, M., and Bitterwolf, J. (2019).

Why relu networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 41–50. Computer Vision Foundation / IEEE.

ì

Hendrycks, D. and Gimpel, K. (2017).

A baseline for detecting misclassified and out-of-distribution examples in neural networks. In International Conference on Learning Representations.

Hendrycks, D., Mazeika, M., and Dietterich, T. G. (2019).

Deep anomaly detection with outlier exposure.

In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana, S. (2019). Certified robustness to adversarial examples with differential privacy.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE.

Meinke, A., Bitterwolf, J., and Hein, M. (2022).

Provably robust detection of out-of-distribution data (almost) for free. In NeurIPS.

References III

Salman, H., Sun, M., Yang, G., Kapoor, A., and Kolter, J. Z. (2020). Denoised smoothing: A provable defense for pretrained classifiers. Advances in Neural Information Processing Systems, 33:21945–21957.

Wei, H., Xie, R., Cheng, H., Feng, L., An, B., and Li, Y. (2022).

Mitigating neural network overconfidence with logit normalization.

In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 23631–23644. PMLR.

