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Background - Adversarial Attacks for In- and Out-of-Distribution Samples

Notation

Classifier f (x)

Confidence, e.g.

h(x) = SoftMax(f (x))

In-distribution (ID)

x ∼ Din (•, •)
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Background - Certified Robustness with Randomized Smoothing

Figure: Randomized Smoothing
[Cohen et al., 2019,
Lecuyer et al., 2019]
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Background - Certified Robustness with Randomized Smoothing

Figure: Diffusion Denoised Smoothing
[Salman et al., 2020, Carlini et al., 2023]

Figure: Randomized Smoothing
[Cohen et al., 2019,
Lecuyer et al., 2019]
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Our Contribution - Certified Robustness for the Maximum Confidence

Theorem
Let F : Rd → P(Y) be any soft classifier and G be its

associated smooth classifier defined as:

G(x)
def
= E

δ∼N (0,σ2I)
[F(x + δ)] ,

with σ > 0. If p = maxy∈Y G(x)y > 1/2, then, we

have that:

max
y∈Y

G(x + δ)y ≤
√

2

π
Φ−1(p) + p,

for every ‖δ‖2 < σΦ−1(p).

8 August 21, 2023 Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection



Our Contribution - Certified Robustness for the Maximum Confidence

Theorem
Let F : Rd → P(Y) be any soft classifier and G be its

associated smooth classifier defined as:

G(x)
def
= E

δ∼N (0,σ2I)
[F(x + δ)] ,

with σ > 0. If p = maxy∈Y G(x)y > 1/2, then, we

have that:

max
y∈Y

G(x + δ)y ≤
√

2

π
Φ−1(p) + p,

for every ‖δ‖2 < σΦ−1(p).

0.00 0.25 0.50 0.75 1.00 1.25√
2/πΦ−1(p) + p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
re

qu
en

cy

ID

OOD

Figure: Distribution of the certified
smooth (σ = 0.12) scores (maximum
confidence) on ID (CIFAR10) and OOD
(all other datasets) samples.
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DISTRO: DIffusion denoised SmooThing for Robust OOD detection

Denoiser

denoiseonce(x + δ; t)

P(y|x)

Classifier

h(x̃)

Discriminator

g(x)

x x̃ P(y|x, i)

P(i|x)

Figure: Overview of DISTRO

P(y|x) = P(y|x, i)P(i|x) + 1
K (1− P(i|x))

P(y|x, i) = h(denoiseonce(x + δ; t))

P(i|x) = 1
1+e−g(x)
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Figure: Two categories: standard (continuous
line) and guaranteed (dashed line).
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Comparison between this work and previous methods

Methods

In-Distribution (ID) Accuracy Out-Of-Distribution (OOD) Detection

Clean Adversarial Certified Clean Adversarial Certified Asymptotic

`∞ `2 `∞ `∞ `2 underconfidence

- Standard

OE [Hendrycks et al., 2019] X X
VOS [Du et al., 2021] X X
LogitNorm [Wei et al., 2022] X X
- Adversarial

ACET [Hein et al., 2019] (X) X X (X)

ATOM [Chen et al., 2021] (X) X (X)

- Guaranteed

GOOD [Bitterwolf et al., 2020] X X X
ProoD [Meinke et al., 2022] X X X X X
DISTRO (Our) X X X X X X X X
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In-Distribution Results

Adversarial Accuracy

AutoAttack with `∞-norm

attacks

budget ε ∈ {2/255, 8/255}
Certified Accuracy

Randomized Smoothing

10’000 Gaussian distributed

samples

failure probability of 0.001

All R > 0 are considered

Table: ID Accuracy: Results of clean, adversarial and
certified accuracy (%) on the CIFAR10 test set. The
grayed-out models have an accuracy drop greater than 3%
relative to the model with the highest accuracy.

Method Clean
Adversarial (`∞) Certified (`2)

ε = 2/255 ε = 8/255 σ = 0.12 σ = 0.25

Plain∗ 95.01 2.16 0.00 28.14 14.17

OE∗ 95.53 1.97 0.00 31.48 10.88

VOS† 94.62 2.24 0.00 13.13 10.02

LogitNorm‡ 94.48 2.65 0.00 12.53 10.25

ATOM∗ 92.33 0.00 0.00 0.00 0.00

ACET∗ 91.49 69.01 6.04 57.13 12.48

GOOD∗
80 90.13 11.65 0.23 17.33 10.31

ProoD∗ ∆ = 3 95.46 2.69 0.00 33.92 13.50

DDS 95.55 72.97 24.09 82.26 64.58

DISTRO (our) 95.47 73.34 27.14 82.77 65.63
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Results for ID: CIFAR10

Table: Robust OOD detection. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test sets, clean AUC, guaranteed (GAUC), adversarial
AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adverarial AUPR (AAUPR), clean FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR).
Averaging was performed on a variety of OOD datasets. We consider MSP [Hendrycks and Gimpel, 2017] for all methods and metrics (with temperature T = 1). The
guaranteed `2-norm is computed for σ = 0.12 for all R > 0, while the adversarial and guaranteed `∞-norm are computed for ε = 0.01. The grayed-out models
have an accuracy drop greater than 3% relative to the model with the highest accuracy. Bold numbers are superior results.

ID: CIFAR10 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
`2 `∞ `∞ `2 `∞ `∞ `2 `∞ `∞

- Standard

Plain∗ 95.01 94.56 48.86 0.00 24.52 99.42 60.05 0.00 82.30 35.72 100.0 100.0 96.72

OE∗ 95.53 98.78 46.88 0.00 37.91 99.87 63.08 0.00 84.49 4.71 100.0 100.0 70.26

VOS† 94.62 90.82 30.13 0.00 20.62 99.15 41.62 0.00 81.80 61.66 94.10 100.0 100.0

LogitNorm‡ 94.48 96.71 40.73 0.00 39.76 99.64 49.31 0.00 86.47 13.95 100.0 100.0 91.10

- Adversarial

ACET∗ 91.48 97.24 60.21 0.00 93.01 99.68 76.22 0.00 99.16 13.82 95.65 100.0 32.15

ATOM∗ 92.33 98.82 97.15 0.00 44.65 99.86 95.51 0.00 85.74 4.14 5.04 100.0 62.65

- Guaranteed

GOOD∗
80 90.13 93.12 36.45 57.52 78.11 99.22 52.31 89.54 95.19 30.00 100.0 72.45 47.55

ProoD∗∆ = 3 95.46 98.72 52.36 59.56 64.22 99.87 66.53 93.89 94.52 5.49 100.0 100.0 86.49

DISTRO (our) 95.47 98.71 53.37 59.49 89.36 99.87 68.45 93.88 98.70 5.44 100.0 100.0 51.15
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Results for ID: CIFAR100

Table: Robust OOD detection. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test sets, clean AUC, guaranteed (GAUC), adversarial
AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adverarial AUPR (AAUPR), clean FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR).
Averaging was performed on a variety of OOD datasets. We consider MSP [Hendrycks and Gimpel, 2017] for all methods and metrics (with temperature T = 1). The
guaranteed `2-norm is computed for σ = 0.12 for all R > 0, while the adversarial and guaranteed `∞-norm are computed for ε = 0.01. The grayed-out models
have an accuracy drop greater than 3% relative to the model with the highest accuracy. Bold numbers are superior results.

ID: CIFAR100 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
`2 `∞ `∞ `2 `∞ `∞ `2 `∞ `∞

- Standard

Plain∗ 77.38 81.60 30.63 0.00 16.98 97.84 45.10 0.00 81.27 82.52 100.0 100.0 100.0

OE∗ 77.28 90.41 39.87 0.00 22.79 98.90 49.46 0.00 81.96 47.49 100.0 100.0 87.74

- Adversarial

ACET∗ 74.47 90.27 36.36 0.00 27.68 98.84 43.50 0.00 82.60 44.11 90.41 100.0 74.99

ATOM∗ 71.73 91.72 84.38 0.00 31.52 98.88 79.95 0.00 83.36 30.81 30.09 100.0 73.69

- Guaranteed

ProoD∗∆ = 1 76.79 90.90 42.83 37.67 43.81 98.91 50.90 89.66 90.46 42.12 100.0 100.0 97.11

DISTRO (our) 76.83 90.89 47.74 37.53 65.16 98.90 55.26 89.63 94.78 40.94 100.0 100.0 87.81
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Conclusion

Table: Overall average
between the metrics for
CIFAR10/100.

Method Average

C-10 C-100

Plain 44.02 34.48

OE 50.12 40.42

VOS 38.60 -

LogitNorm 46.31 -

ACET 59.64 41.86

ATOM 64.79 54.38

GOOD80 64.74 -

ProoD ∆ = 3 64.09 52.51

DISTRO (our) 77.08 59.95

Surprisingly, ATOM shows similar results as ProoD

and GOOD.

It is evident that the `2-norm GAUC (and GAUPR)

diverge from zero when standard OOD detection

models are considered.

Code on Github
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